
VIII. APPENDIX

A. Implementation Details

Dubins Car. For the Dubins Car experiments, we use
a Recurrent State-Space Model (RSSM) [1] as the world
model. RSSM decomposes the latent state into determin-
istic and stochastic components, zt := [ht|xt], where the
stochastic latent is modeled as a distribution and optimized
via the KL divergence between its prior and posterior. We
build on the open-source implementation of DreamerV34.
We use a continuous stochastic latent space modeled as a
32-dimensional Gaussian. The action space is normalized to
[-1, 1]. The hyperparameters for the Dubins Car experiments
are provided in Table IV.

HYPERPARAMETER VALUE

IMAGE DIMENSION [128, 128, 3]
ACTION DIMENSION 1
STOCHASTIC LATENT Gaussian
LATENT DIM (DETERMINISTIC) 512
LATENT DIM (STOCHASTIC) 32
LATENT DIM (FAILURE PROJECTOR) 512
ACTIVATION FUNCTION SiLU
ENCODER CNN DEPTH 32
ENCODER MLP LAYERS 5
FAILURE PROJECTOR LAYERS 2
BATCH SIZE 16
BATCH LENGTH 64
OPTIMIZER Adam
LEARNING RATE 1e-4
ITERATIONS 10000

TABLE IV: Dreamer Hyperparameters

Vision-Based Sweeping. For the real-world hardware task,
we use DINO-WM [4], a transformer-based world model
that represents latent states using the patch tokens of DI-
NOv2 [37]. The DINOv2 encoder is kept frozen, and only
the parameters of a vision transformer are trained. The
latent ẑt+1 consisting of dense patch tokens is determin-
istically predicted by conditioning on a sequence of past
normalized actions at→H:t and latent tokens zt→H:t from the
previous H timesteps. The model is trained with teacher
forcing to ensure temporal consistency by regressing the
latent patches, using the mean squared error (MSE) loss:
LDINO = →E(ot+1)↑ fz(zt→H:t, at→H:t)→

2
. The hyperpa-

rameters for DINO-WM are provided in Table V. To measure
the similarity of DINOv2 features in Sec. VI-C, we compute
the norm of the patch tokens to obtain a global feature
z ↓ R384 from the dense patches z ↓ RNpatches↑384.

HJ Reachability Analysis. To solve the latent fixed-
point safety Bellman equation, we adopt DDPG [35] within
an off-policy, model-based reinforcement learning frame-
work, using the implementation from [38]5. We model
the safety value function as a latent-action value func-
tion conditioned on the constraint representation Q(z, a; zc).

4https://github.com/NM512/dreamerv3-torch
5https://github.com/jamesjingqili/Lipschitz_

Continuous_Reachability_Learning

HYPERPARAMETER VALUE

IMAGE DIMENSION [224, 224, 3]
ACTION DIMENSION 3
DINOV2 PATCH SIZE (16 → 16, 384)
VIT DEPTH 6
VIT ATTENTION HEADS 16
VIT MLP DIM 2048
LATENT DIM (FAILURE PROJECTOR) 512
ACTIVATION FUNCTION SiLU
FAILURE PROJECTOR LAYERS 2
BATCH SIZE 16
BATCH LENGTH 4
OPTIMIZER Adam
LEARNING RATE 5e-5
ITERATIONS 100000

TABLE V: DINO-WM Hyperparameters

The safety policy is parameterized by an actor-network
a = ω

!(· | z, zc) ↓ [↑1, 1]daction , and the safety value is
evaluated by V

!(z) = maxa Q(z, a; zc) = Q(z,ω!(z, zc)).
Each trajectory starts from random initial states with ran-

domly sampled constraint representations. The replay buffer
B then stores transitions of the form (z, zc, a, l̃, z↓). The
safety filter is optimized using the following objectives:

Lcritic := EB

[
(Q(z, a; zc)↑ y)2

]
(9)

y = (1↑ ε) l̃ + εmin{l̃,max
a→

Q(z↓, a↓; zc)}. (10)

Lactor := Ez↔B [↑Q(z, a; zc)] , a = ω
!(· | z, zc), (11)

where ε is scheduled from 0.85 to 0.9999. The hyperparam-
eters for training DDPG are summarized in Table. VI.

HYPERPARAMETER VALUE

ACTOR ARCHITECTURE [512, 512, 512, 512]
CRITIC ARCHITECTURE [512, 512, 512, 512]
NORMALIZATION LayerNorm
ACTIVATION ReLU
DISCOUNT FACTOR ω 0.9999
LEARNING RATE (CRITIC) 1e-3
LEARNING RATE (ACTOR) 1e-4
OPTIMIZER AdamW
NUMBER OF ITERATIONS 640000
REPLAY BUFFER SIZE 1000000
BATCH SIZE 512
MAX IMAGINATION STEPS 30

TABLE VI: DDPG hyperparameters.

B. Failure Projector

In Sec. IV and Eq. (3), we define a failure projector that
maps the raw latent representation of the world model into
a metric space where similarities are better aligned with the
user’s notion of failure. Since AnySafe constructs the failure
set based on a latent-space similarity metric, the projected
latent space retains only failure-relevant features. In Sec. VI-
C, we qualitatively demonstrate that the raw DINOv2 latent
space is insufficient to define a failure set, yielding a noisy
and uninformative similarity metric that cannot capture fine-
grained position-based differences, which in turn degrades
the quality of the value function.

https://github.com/NM512/dreamerv3-torch
https://github.com/jamesjingqili/Lipschitz_Continuous_Reachability_Learning
https://github.com/jamesjingqili/Lipschitz_Continuous_Reachability_Learning

𝜃 = 0 𝜃 = 𝜋/4 𝜃 = π/2

𝑉 (𝑧; 𝑧𝑐)Constraint-Parameterized Safety Value
ℓ𝑧(𝑧; 𝑧𝑐)

SimilarityConstraint
Image

𝑜𝑐

less safe
m

ore safe

Fig. 9: Dubins’ Car Qualitative Result with Raw Unpro-
jected Features. We visualize the latent similarity and safety
value function at heading slices ϑ ↓ {0,ω/4,ω/2} using the
raw Dreamer features without applying the failure projector.

Architecture. We implement the failure projector as a
2-layer MLP, with the architecture summarized in Ta-
ble VII. For RSSM, the input is the latent vector formed
by concatenating the deterministic and stochastic compo-
nents, zt = [ht |xt], resulting in an input dimension of
din = 512 + 32 = 544. For DINO-WM, we compute the
norm of the patch tokens from the dense latent features
z ↓ RNpatches↑384 and concatenate the proprioceptive state,
yielding an input dimension of din = 384 + 3 = 387.

LAYER INPUT DIM OUTPUT DIM NORMALIZATION

Linear din din LayerNorm
Linear din 32 LayerNorm

TABLE VII: Failure Projector Architecture

Ablation. We provide a qualitative evaluation of the raw
world model latent space of Dreamer in the Dubins Car.
Fig. 9 shows both the feature similarities computed us-
ing unprojected world model latents and the corresponding
safety value function learned with these latents. Compared
to the results learned from projected features shown in
Fig. 3 and Fig. 4, the unprojected similarities fail to rep-
resent position-based, failure-relevant distinctions, resulting
in poorly learned value functions.

C. Calibration of Latent Similarity

In Sec. IV, we compute a threshold for defining a latent
failure set and then apply this threshold at runtime for
safety filtering in (8), operating on the safety value func-
tion. Formally, this calibration procedure guarantees only
that the similarity measure—and the corresponding failure
set—are calibrated. Approximate value function solvers (e.g,
RL) can still induce errors in the downstream safety filter,
and calibrating the value function directly requires stronger
assumptions about access to the ground-truth unsafe set
labels [33]. Nevertheless, we prove in Theorem 1 that under
a perfect value function solver, the calibrated threshold ϖ

can be applied directly to the value function learned from
the similarity measure, yielding an unsafe set defined as the
sub-threshold level set of the value function.

Specifically, we show that learning a threshold-dependent
safety value function V

!

ω
with a safety margin ϱ

ω

z
:= ϱz ↑ ϖ,

is equivalent to learning the value function V
! from the

raw latent similarity ϱz and applying the threshold ϖ post
hoc. This equivalence implies that calibration can be per-
formed after computing the value function using the latent
similarities without adjusting them with thresholds, whereas

threshold-dependent training would require recomputing the
value function whenever the threshold changes.

Theorem 1. Let ϱz : Z ↔ R be a safety margin function.

Consider the discrete-time safety Bellman backup operator:

(TV)(zt) = (1↑ ε) ϱ(zt) (12)

+ εmin
{
ϱ(zt), max

at↗A
Eẑt+1↔fz(·|zt,at)

[
V (ẑt+1)

]}
.

Let V
!

denote its unique fixed point. For a constant ϖ ↓ R,

define ϱ
ω

z
:= ϱz ↑ ϖ and let Tω be the safety Bellman backup

operator T where the margin function ϱz is replaced by ϱ
ω

z
:

(TωV)(zt) = (1↑ ε) (ϱ(zt)↑ ϖ) (13)

+ εmin
{
ϱ(zt)↑ ϖ, max

at↗A
Eẑt+1↔fz(·|zt,at)

[
V (ẑt+1)

]}
.

Let the fixed point of this Bellman backup be V
!

ω
. Then:

V
!

ω
= V

!
↑ ϖ and (14)

{ z : V
!

ω
(z) < 0 } = { z : V

!(z) < ϖ }. (15)

Proof. Let V : Z ↔ R be any value function. Recall the
linearity of expectation and the shift-invariance identities:

min{a↑ ϖ, b↑ ϖ} = min{a, b}↑ ϖ,

max{a↑ ϖ, b↑ ϖ} = max{a, b}↑ ϖ.

Using ϱ
ω

z
= ϱz ↑ ϖ, we compute

(Tω(V ↑ ϖ))(zt) = (1↑ ε) (ϱz(zt)↑ ϖ)

+ εmin
{
ϱz(zt)↑ ϖ, max

at↗A
E
[
V (ẑt+1)↑ ϖ

]}

= (1↑ ε) ϱz(zt)↑ (1↑ ε)ϖ

+ ε

(
min

{
ϱz(zt), max

at↗A
E
[
V (ẑt+1)

]}
↑ ϖ

)

=
(
(1↑ ε) ϱz(zt)

+ εmin
{
ϱz(zt), max

at↗A
E
[
V (ẑt+1)

]})
↑ ϖ

= (TV)(zt)↑ ϖ.

In particular, if V := V
! is the fixed point of T , then,

Tω(V
!
↑ ϖ) = TV

!
↑ ϖ = V

!
↑ ϖ, (16)

where V
!
↑ ϖ is a fixed point of Tω . Since the fixed point is

unique [16], V !

ω
= V

!
↑ ϖ.

Thus, the corresponding unsafe sets are equivalent:

{ z : V
!

ω
(z) < 0 } = { z : V

!(z)↑ ϖ < 0 }

= { z : V
!(z) < ϖ }. (17)

	Introduction
	Related Work
	Background: Latent Safety Filter
	Constraint-Parameterized Latent Safety Filter
	Simulation Results
	Experimental Setup
	Can AnySafe Adapt to Diverse Safety Constraints?
	Does Calibration Adaptively Control the Failure Set Size?

	Hardware Results: Vision-based Sweeping with a Robotic Manipulator
	Experimental Setup
	Can AnySafe Safeguard a Runtime-Specified Constraint?
	AnySafe's Generalization Beyond Fixed Safety Filters
	Can AnySafe Adapt its Level of Conservativeness?

	Conclusion & Limitations
	References
	Appendix
	Implementation Details
	Failure Projector
	Calibration of Latent Similarity

